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A possible clarification of memory effect observed in crack patterns of drying pastes �A. Nakahara and Y.
Matsuo, J. Phys. Soc. Jpn. 74, 1362 �2005�� is presented in terms of a macroscopic elastoplastic model of
isotropic pastes. We study flows driven by steady gravitational force instead of external oscillation. The model
predicts creation of residual tension in favor of cracks perpendicular to the flow direction, thus causing the
same type of memory effect as that reported by Nakahara and Matsuo for oscillated CaCO3 pastes.
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I. INTRODUCTION

As the plastic behavior of soft glassy materials has been
attracting increasing interest �1�, it was reported by Nakahara
and Matsuo �2–4� that a drying paste exhibits a memory
effect. They observed a drying process for a paste containing
calcium carbonate �CaCO3� and water in a shallow container
in order to study the resulting crack pattern. The crack pat-
tern was typically found to be isotropic, but they discovered
a way to introduce anisotropy into the paste before the drying
process commences: by applying a horizontal oscillation to
the container immediately after the paste is poured into it, a
memory of the oscillation is imprinted into the paste, which
determines how it should break in the future.

Through systematic experiments, Nakahara and Matsuo
also found that plasticity is essential to the memory effect in
CaCO3 pastes. No memory effect is observed if the strength
of the applied oscillation is below the threshold value corre-
sponding to the plastic yield stress of the paste. Just above
the threshold value, the paste remembers the oscillation that
caused the plastic flow, developing cracks perpendicular to
the direction of the oscillation. If the oscillation is too strong
or the paste contains too much water, waves and global flows
are induced, eliminating the memory effect. A different kind
of paste �mixture of magnesium carbonate hydroxide with
water� �5� exhibits not only a memory effect similar to that
of CaCO3 that occurs just above the threshold of plastic
flows and causes cracks perpendicular to the external oscil-
lation, but also a different type of memory effect in its water-
rich condition where the cracks are parallel to the direction
of the global laminar flow caused by the oscillation. Too
strong an oscillation and too much water also destroy the
memory in this paste, with the emergence of chaotic, turbu-
lencelike flows �49� characterized by fluid motion in every
direction.

Here we focus our attention on the former type of
memory effect that causes cracks perpendicular to the exter-
nal forcing, which we refer to as the type-I Nakahara effect.
The latter type, which could be called the type-II Nakahara
effect, will be discussed only briefly.

Although it is certain that the memory effect in CaCO3
pastes originates from plastic flow, it is unclear which as-

pects of the plastic flow are essential. More specifically, be-
cause the role played by the unsteadiness of the flow is not
fully understood, it is unknown whether a slope flow, in
which the external forcing is steady, can cause a memory
effect. To answer this question, co-workers of the present
author have started an experimental study on the slope flow
of CaCO3 paste. Paste supplied through a funnel is driven
downstream by gravitational force, and when the supply is
stopped, the paste “freezes” at some finite thickness due to
the finite yield stress. Preliminary results suggest the pres-
ence of a memory effect �type-I Nakahara effect�, where the
cracks are perpendicular to the direction of the flow, i.e., the
direction of the external forcing. Details of the experiment
will be reported elsewhere �6�.

As a first step in the theoretical investigation into the
slope flow of CaCO3 paste, we study the dynamics of an
elastoplastic liquid layer with constant thickness falling
down an inclined wall. First, we construct a continuum
model equation that meets several requirements, so that it
can be a good description of the CaCO3 paste. Next, we
apply this model equation to the two-dimensional slope flow
with constant layer thickness. We find that the flow develops
tension in the streamwise direction, which remains in the
paste. Since the residual tension implies that the dried paste
will be more fragile in the pertinent direction, this result
presents a possible clarification of the type-I Nakahara effect.

II. REQUIREMENTS FOR THE MODEL

The strategy in this paper includes the construction of a
set of model equations acceptable as a continuum description
of CaCO3 paste. A useful precedent for this model construc-
tion can be found in the continuum mechanics of gases and
simple liquids �7,8�, in which the Navier-Stokes equation is
deduced from several macroscopic requirements, such as ho-
mogeneity, isotropy, and the postulation that the deviatoric
stress tensor is a linear function of the rate-of-strain tensor
�without time lag�. Following this precedent, let us list the
analogous requirements for paste flows.

We assume that the dynamics of the paste is isotropic, in
the sense that the paste has no preferred direction except for
the principal axes of the stress tensor. This is plausible for
CaCO3, which consists of spherical particles �3,4�. On the
other hand, magnesium carbonate hydroxide is not expected
to exhibit isotropy in this sense, as its particles are disklike*ooshida@damp.tottori-u.ac.jp
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�5� and therefore can exhibit anisotropy similar to that of
liquid crystals.

The stresses in the pastes under present consideration are
primarily sustained by the interparticulate bond network.
There should be also a contribution from the viscosity of the
solvent �water�, but we assume that this contribution is much
smaller than that of the interparticulate bonds �in other
words, we consider only very thick colloids�. Unlike the
chemical bonds, the interparticulate bonds in flowing pastes
are usually so breakable that they are constantly destroyed
and reconstructed. The stress is therefore expected to be gov-
erned by a Maxwell-type equation �9–13�. whose relaxation
time represents the lifetime of the bond.

We postulate that the relaxation time, denoted by �, is a
scalar: the collapse of the force network involves bond
breakage in all directions. Since the paste is plastic, the re-
laxation time � must be variable. An infinitely large � repre-
sents solidlike behavior, while a finite � denotes fluidity. The
transition between these two behaviors with a certain thresh-
old gives a formulation of plasticity. Isotropy dictates not
only that � itself is a scalar, but also that � should be a
function of some scalar quantity. With the von Mises crite-
rion �14� and its energetic interpretation �15� in mind, we
assume that the relaxation time � is a function of strain en-
ergy. Introducing � to denote the nondimensionalized strain
energy �defined later�, this assumption is formulated as

� = ���� � �+ � �� � threshold�
�0 = �p/S �� � threshold� ,

� �1�

where �p is a constant with the dimension of viscosity, and S
is the shear modulus.

We describe the relaxation of the bond network in terms
of the Lagrangian �material� variable �, rather than the Eu-
lerian variable r. The main reason for this choice is the ad-
equacy of the Lagrangian description for tracing so-called
frozen quantities. With the relevant physical quantity provi-
sionally symbolized as G �probably representative of the den-
sity of the bond network�, the equation of relaxation is ex-
pected to have the form

�1 + �
�

�t
	G��,t� = G���,t� . �2�

In the limit of an infinitely long relaxation time ��→ +��,
Eq. �2� reduces itself to

�tG��,t� = 0 �3�

which manifests directly that G is “frozen” in the material. In
the Eulerian description, the same assertion as Eq. �3� would
have a more complicated form,

��t + v · ��G̃�r,t� + ¯ = 0 �Eulerian� , �4�

where “¯” stands for various convective terms required ac-

cording to the tensorial character of G̃. Since we prefer the
clarity of Eq. �3� to the obscurity of Eq. �4�, the Lagrangian
description is adopted during the construction of the model
�the result could be reformulated in the Eulerian description
after it is developed, of course�.

Generally, the mathematical formulation of elasticity is
related to the deformation of the fluid �or material� elements.
In the steady and quasisteady motions of pastes, deformation
�as opposed to rate of deformation� can increase unlimitedly
as the time elapses. This requires our model to be free from
the restrictive assumption of a small deformation, motivating
the inclusion of the geometrical nonlinearity to the full ex-
tent. Besides, the solid behavior of the paste for a small
deformation should have an isotropic Hookian limit �with
shear modulus S�, because the paste is isotropic. For the
same reason, the fluid behavior is expected to have a Navier-
Stokes limit for small � or small shear rate �which is realized
for water-rich pastes with a vanishingly small yield stress�.
In both behaviors, we regard the paste as incompressible, as
far as flow processes are concerned, neglecting the slow ef-
fects of drainage and evaporation. Finally, the model equa-
tion must have “relabeling symmetry” �16�, i.e., the system
of equations must remain formally unchanged in regard to
the change in the Lagrange variables. In what follows, while
making some additional assumptions, we will construct a
system of model equations that satisfies all of these require-
ments.

III. MODEL

In this section, we construct a continuum paste model for
a generic nd-dimensional geometry. The model equations
will be summarized at the end of Sec. III B. Subsequently, in
Secs. IV and V, this model will be analyzed under a specific
setup describing a two-dimensional slope flow with constant
layer thickness. Readers who are more interested in the
analysis than the model construction may, after checking
Figs. 1 and 2, skip to Eqs. �44a�–�44c� at the end of Sec. IV.

A. Kinematics

First, we review the Lagrangian description of kinematics.
The configuration of an nd-dimensional continuum is repre-
sented by a mapping from Lagrangian variable � �also
known as “label” or “material variable” �16�� to the position
vector r. For nd=3, we write

� = ��,�,�� � r = r��,t� = 
x��,�,�,t�
y��,�,�,t�
z��,�,�,t�

�
C

, �5�

where � �C denotes the representation in terms of Cartesian
components. For nd=2 we will omit � and y, assuming that
all the motion occurs in the �x ,z� plane.

0 ε

ν

(σY /S )2

FIG. 1. �Color online� The inverse of the relaxation time, �−1

=	���, defined by Eq. �29�. According to neo-Hookian constitutive
equation of nd-dimensional elastic bodies, � is given by Eq. �23�.

OOSHIDA TAKESHI PHYSICAL REVIEW E 77, 061501 �2008�

061501-2



The time derivative of r=r�� , t� gives the velocity

v = �tr��,t� . �6�

In Eq. �6� and in what follows, �t stands for the time deriva-
tive in the Lagrangian description �Lagrange derivative,
which is usually denoted by D /Dt in Eulerian description�.
Using ���r ,��r ,��r �where �i=� /��i� as the set of local
bases, we can represent the velocity as

v = vi�ir . �7�

In Eq. �7� and in what follows, summation over i� �� ,� ,�
is understood according to Einstein’s contraction rule. The
coefficients �vi� in Eq. �7� are referred to as the contravariant
components of v �see Eqs. �A1� and �A6� in Appendix A�.
The acceleration is �tv=�t�vi�ir�; we emphasize again that �t
denotes the Lagrange derivative.

The square of the Euclidean distance between two neigh-
boring “particles,” labeled by � and �+d�, is

ds2 = ���ir�d�i�2 = gijd�id� j, gij = ��ir� · �� jr� , �8�

which introduces the metric tensor denoted by �gij� or g. In
this paper we refer to g as the “Euclidean” metric tensor,
which does not mean that gij is equal to Kronecker’s delta
but means that the Euclidean metric of the r space is im-
ported into the � space by Eq. �8�.

In general, it is totally unnecessary to choose � to be some
“initial” position of the element, except for some particular
situations in which the initial state has a special significance.
One of these special cases is that of purely elastic bodies
initially set in a stress-free and undeformed state, called a
“natural state” �17�. It is meaningful in this case to choose
the “natural state” position vector as � so that gij defined by
Eq. �8� is essentially identical to the Cauchy-Green deforma-
tion tensor �9� whose difference from 
ij is responsible for
the elastic restoring force. This is a rather special case, how-
ever. More generally, � has nothing to do with the initial
state, and the natural metric tensor g� is used as a reference
to define the elastic deformation, instead of assuming the
global existence of the stress-free natural state. The �locally�
undeformed state is formulated as g=g�, and the difference
between g and g� is responsible for the stress. More details
about g� will be discussed later.

The incompressibility condition is expressed as

�t det g = 0, �9�

because the mass of a fluid element is ��det gdnd� which
should remain unchanged, and the density � also remains
unchanged during the motion. For simplicity, we assume that
� is a global constant. Then, without loss of generality, we
can replace Eq. �9� by

det g = 1. �10�

B. Equation of motion and constitutive relation

Now we detail the dynamics. With the stress field denoted
by P= Pij��ir� � �� jr� and the external body force by F
=Fi�ir, the momentum equation is written as

��t�vi�ir� = −
�

�r
·t�Pij��ir� � �� jr�� + Fi�ir

or, in contravariant component representation, as �17�

���tv
i + v j� jv

i� = − � jP
ij + Fi. �11�

The left-hand side is the contravariant component of the ac-
celeration vector �tv multiplied by the density �, and � j de-
notes the covariant derivative �these mathematical concepts
are clarified in Appendix A to the degree sufficient for the
present work; for a more profound understanding of the
mathematical background, see Refs. �17,18��. While F is re-
garded as a given, P must be determined by a suitable con-
stitutive relation.

From the discussion in the previous section, we expect
that P obeys a viscoelastic equation of Maxwell type. The
Maxwell model is often illustrated as a spring and dashpot
connected in series �9�, for which the relation between the
tension T and the total length x is given by

T = ��xS − xS
�� = 

dxD

dt
, x = xS + xD, �12�

where � is the spring constant,  is the resistance, xS and xD
are the length of the spring part and the dashpot part, respec-
tively, and xS

� denotes the natural length of the spring part. It
is customary to eliminate the “internal” variables �xS, xD, and
xS

�� from Eq. �12�, which yields

�−1 + �−1 d

dt
	T =

dx

dt
. �13�

A time scale  /� in regard to stress relaxation is recognized
in Eq. �13�.

Now it is necessary to elaborate the Maxwell model in
two respects: it needs to include plasticity and it also needs
to describe nd-dimensional continuum mechanics. In regard
to the first point, most of the existing studies are based on an
elastoplastic decomposition, which is a direct extension of
Eq. �12�. However, this approach has a disadvantage in that
the incautious use of internal variables can lead to a diffi-
culty, in particular for a finite deformation �19,20�. Here we
adopt a different approach that is closer to Eq. �13�, thereby

G

θ

x

z

z=0

z=H

FIG. 2. �Color online� Schematic view of the system and coor-
dinates. A uniform fluid layer with thickness H is assumed. The
label variable � coincides with the depthwise Eulerian coordinate z
in the present setup, and the velocity is Uex where U=�tX�� , t�. The
gravitational acceleration vector is G= �G sin ��ex− �G cos ��ez,
whose x component is Gx=G sin �.
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avoiding a direct reference to the internal variable xD.
The essential idea is to attribute the relaxation to the natu-

ral length x�, which is related to the tension T as if the model
is totally elastic:

T = ��x − x�� . �14�

The natural length x� can be expressed as x�=xS
�+xD in

terms of internal variables, but this relation is not to be used
explicitly; we note only that x� is time dependent while xS

� is
not. By substituting Eq. �14� into Eq. �13�, we find an equa-
tion that describes the relaxation of the natural length x�:

dx�

dt
=

�


�x − x�� , �15a�

or, by introducing �= /�, as

�1 + �
d

dt
	x� = x �15b�

in the form of relaxation toward x�=x. Equations �14�, �15a�,
and �15b� provide us with a prototype of the plastic model.

Let us find nd-dimensional continuum equations corre-
sponding to the prototypical Eqs. �14�, �15a�, and �15b�. As a
candidate, we adopt an elastic constitutive equation

Pij = p̃gij + S�gij − g�
ij� �16�

together with an inelastic equation

�tg�
ij = − 	g�

ij + 	�gij , �17�

where �gij� denotes the inverse of the component matrix of
the “Euclidean” metric tensor �gij�, and �g�

ij� is that of the
natural metric tensor, such that

gijg
jk = gij

�g�
jk = 
i

k.

The natural metric tensor g� represents the square of the
“natural distance” between two neighboring points labeled
by � and �+d�,

�ds��2 = gij
�d�id� j , �18�

in the sense that the difference between ds2 and �ds��2 ac-
counts for the restoring force according to Eq. �16�. In the
special case of purely elastic bodies initially set in a stress-
free “natural state” �at t= t0�, ds� is the distance in this initial
configuration and g� is the corresponding metric:

gij
� = �gij�t=t0

�purely elastic case� .

In general, however, g� differs from the initial value of g.
This is inevitable due to Eq. �17�, which prescribes that the
natural metric g� is subject to relaxation. To make Eq. �17�
more easily recognizable as a relaxation equation, we rewrite
it in the manner of Eqs. �2� and �15b� as

�1 + ��t�g�
ij = Kgij, � = 	−1, K =

	�

	
; �19�

this equation provides that �g�
ij� should evolve toward an iso-

tropic tensor �Kgij�. Plasticity is incorporated via � according
to Eq. �1�. The idea of using a natural metric to reformulate
the Maxwell model has been known among several research-

ers of rheology �including the authors of Refs. �11,12��, but
the present author could not identify any publications in
which the notion of the natural metric and its relaxation is
formulated explicitly.

The nd-dimensional elastic Eq. �16�, corresponding to the
one-dimensional Hookian Eq. �14�, originates from consid-
eration of elastic strain energy. Since gij

�d�id� j is a positive
definite quadratic form, there exists a set of Euclidean vec-
tors �p� ,p� ,p� such that gij

�=pi ·p j �this is proved essentially
in the same way as the polar decomposition theorem �9,17��.
Then, by defining

dr� = pid�i, �20�

we have �ds��2=dr� ·dr�= �dr��2. Note that Eq. �20� does not
claim that dr� is a differential of “r�”: such integrability is
not guaranteed. However, it is legitimate to interpret dr� as a
natural configuration of each small element. Since pi’s must
be linearly independent due to the positivity of det g�, Eq.
�20� can be inverted, which we denote as d�i=p�

i ·dr�. From
this and the “Euclidean” metric �8�, we have a relation be-
tween the Euclidean distance ds and the natural configuration
dr�,

ds2 = �gijp�
i

� p�
j �:�dr�

� dr�� . �21�

Let us denote the eigenvalues of this quadratic form by ���
2

so that ds2=��
2 �dr��2 along the �th principal axis. The geo-

metrical meaning of �� is clear: it represents the elongation
factor of the line element. Isotropy requires that the elastic
energy �denoted by E� should consist of a symmetric combi-
nation of these eigenvalues. The simplest form with a correct
Hookian limit is

E =
1

2
S��1

2 + �2
2 + �3

2 − 3� �22�

for nd=3. Equation �22� is known as the neo-Hookian con-
stitutive equation �17�. With the aid of the incompressibility
condition, which implies �1�2�3=1, Eq. �22� reduces to E
=S�e1

2+e2
2+e3

2� for small deformations ���=1+e� and �e��
�1�. By using the definition of p�

i and introducing �
=�����

2 −1�, for finite deformations, the elastic energy E is
expressed in terms of the inverse natural metric tensor:

E =
1

2
S�, � = gijg�

ij − nd. �23�

By calculating the variation of the elastic energy E in regard
to r through the metric tensor g under the constraint of in-
compressibility condition �10�, we find that the contravariant
components of the stress tensor are given by Eq. �16�. De-
tails of this calculation are shown in Appendix B. Note that
the tensor �gij� in the first term of the right-hand side of Eq.
�16� stands for the Euclidean unit tensor:

gij��ir� � �� jr� = 1 . �24�

Thus we find that the term p̃gij stands for an isotropic stress.
The scalar p̃ is related to the hydrostatic pressure arising as a
constraint force �Lagrange multiplier� for incompressibility.
It is convenient to define
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�J = S�g�
ij��ir� � �� jr� − 1� �25�

and call it the “elastic stress tensor” so that the stress tensor
P= Pij��ir� � �� jr� is given by

P = p̃1 − �J . �26�

It is easy to confirm that �J vanishes when gij
�=gij.

We emphasize that �g�
ij� in Eq. �25�, which determines the

elastic stress tensor �J, is the inverse of the natural metric
tensor. This must be the case so that �J should remain invari-
ant under the relabeling of the Lagrange variables. This is
also acceptable if we remember that springs with different
lengths but the same local properties obey a constitutive re-
lation analogous to Eq. �25�,

T = s0� x

x� − 1	 ,

where s0 is the normalized spring constant, and notice that �J
is an intensive variable as well as the tension T and therefore
must be expressed as such.

Now we discuss the inelastic part of our model described
by Eq. �17�. This equation states the relaxation of the inverse
natural metric tensor, formulated according to the following
discussion on interparticulate bonds. The natural metric rep-
resents the energetically optimal configuration of the par-
ticles determined by the bond network. The network
strength, or the bond density, is represented by the inverse
natural metric g� �not by the natural metric g� itself�. In
flowing pastes, however, this bond network is ephemeral. We
suppose that the network is destroyed at some rate and re-
constructed isotropically. With the destruction rate denoted
by 	 and the reconstruction rate by 	�, the temporal change
of the bond density is given by −	g�

ij +	�gij, leading to Eq.
�17�.

The ratio K=	� /	 is determined by postulating the incom-
pressibility of g�,

det g� = 1. �27�

Differentiating Eq. �27� with regard to t and then substituting
Eq. �17� into it, we find that nd	=gij

�gij	�, which implies

K =
nd

gij
�gij �i.e., 	� =

nd

gij
�gij 		 . �28�

According to Eq. �1� in the previous section, � is supposed
to be a function of the elastic strain energy, so that �=����
with � given by Eq. �23�. The simplest form consistent with
Eq. �1� is

� = � + � �� � �Y
2 /S2�

�p/S �� � �Y
2 /S2� ,

�
where �Y is the yield stress �we will see later that the energy
� for shear stress � is calculated to be �2 /S2�. It is physically
more realistic and mathematically less problematic to sup-
pose that � is a continuous function of �. Here we assume

� = 	−1, 	 = 	��� =
S

�p
max�0,1 −

�Y/S
��

	 , �29�

which is Lipschitz-continuous in spite of weak singularity at
the yield point �Fig. 1�. Equation �29� is chosen in such a
way that it agrees with Bingham plasticity �13,21,22� for
simple shear flow with shear rate �̇, where the shear stress �
is estimated to be ��S��̇. Admitting ���2 /S2, from Eq.
�29� we find

�̇ �
	�

S
= 	����� = �0 �� � �Y

2 /S2�

�p
−1�S�� − �Y� �� � �Y

2 /S2� ,
�

which is Bingham plasticity.
Let us summarize our model. The governing system of

equations consists of Eqs. �11�, �16�, �19�, and �29�, supple-
mented with the kinematic relations �6�–�8�, as well as in-
compressibility conditions �10� and �27�. Equation �29� re-
quires the evaluation of � by Eq. �23�, which is actually not
independent of Eq. �16�, but should be included in the model
for convenience. The independent variables are � and t �La-
grangian description�, and the essential dependent variables
are r and g�. The velocity and the Euclidean metric tensor
are derived from the differentials of r=r�� , t�. Due to the
incompressibility condition, there arise two additional scalar
fields, namely, p̃ and K; the latter is determined by Eq. �28�.

C. Navier-Stokes limit

There remains the task to confirm that the whole system
of model equations reduces to the nd-dimensional incom-
pressible Navier-Stokes equation if � is set to be a small
constant such that �� ��v�−1. By expanding gij

� �as well as
g�

ij� and K in power series of �, from Eqs. �19� and �27� we
find

g�
ij = gij − ��tg

ij + O��2�, K = 1 + O��2� . �30�

The time-derivative term �tg
ij on the right-hand side of Eq.

�30� is calculated as

�tg
ij = − gikgjl�tgkl �31a�

and

�tgij = �t���ir� · �� jr�� = ��iv� · �� jr� + ��ir� · �� jv�

= �iv j + � jvi, �31b�

where �vi� denotes the covariant components of the velocity
vector v, and �iv j denotes the covariant derivative of v j de-
fined by �i�v j�� j�= ��iv j��� j. Using Eqs. �31a� and �31b� to
evaluate g�

ij in Eq. �30�, from Eq. �25� we obtain

�J = S�g�
ij��ir� � �� jr� − 1�

= S�g�
ij − gij���ir� � �� jr� = − S���tg

ij���ir� � �� jr�

= S��gikgjl�tgkl���ir� � �� jr� = S���tgkl����k� � ���l�

= S���kvl + �lvk����k� � ���l� = S��� � v+t�� � v�� ,

and identify it with the Newtonian-Stokesian relation
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�J = 2�� sym grad v ��� = S�� , �32�

where sym grad v denotes the symmetric part of � � v. The
equation of motion then reduces to the Navier-Stokes equa-
tion, which was to be demonstrated.

IV. SIMPLIFICATION FOR SLOPE FLOWS
WITH UNIFORM THICKNESS

We have obtained a system of equations that is acceptable
as a model of isotropic pastes. Next, let us analyze this sys-
tem under a particular setup describing slope flows. Though
the equations are nd-dimensional and it is also possible to
formulate boundary conditions for fully three-dimensional
surface deformations, it is not wise trying to solve the full
system immediately by direct numerical simulations, as it
would require too much difficulty and provide too little in-
sight. Rather, the first thing to do is to elucidate the basic
behavior of the model in the simplest situation.

Here, we study a two-dimensional paste flow �nd=2� on a
slope inclined by an angle �. The setup of the system is
shown in Fig. 2. All of the motion is supposed to occur in the
�x ,z� plane, and it is in this plane that the paste is assumed to
be isotropic. The flow is driven by the gravitational force
F=�G, where G is the gravitational acceleration vector,

G = � G sin �

− G cos �
�

C
= �G sin ��ex − �G cos ��ez. �33�

The free surface requires the dynamical boundary condition
and the kinematic boundary condition. The dynamical
boundary condition prescribes the continuity of the stress,
while the kinematic boundary condition postulates that the
surface must move together with the adjacent fluid to satisfy
the mass conservation law. Since we assume here that the
paste layer has a constant thickness H, the dynamical bound-
ary condition reduces to Pij� jz=0 �see Eq. �A20� and the
text below it in Appendix A�. The kinematic boundary con-
dition is trivially satisfied by assuming that the velocity field
is also uniform in regard to x and parallel to the x axis.

Under the present assumptions, the fluid motion is ex-
pressed in terms of a single function which we denote by
X=X�� , t�, as

r = �� + X

�
�

C
= �� + X�ex + �ez. �34�

The time derivative of Eq. �34� gives the velocity

v = �tr = Uex, �35�

where U=�tX. By substituting Eq. �34� into Eq. �8�, we ob-
tain the Euclidean metric tensor gij expressed in terms of X,

g = �g�� g��

g�� g��
� = � 1 X�

X� 1 + X�2� , �36�

where X� is an abbreviation for �X /��. The incompressibility
condition �10� is already satisfied and there is no need to
require it particularly.

Let us concretize the equations containing the natural
metric. The calculation can be performed in at least two dif-

ferent ways: one may evaluate the terms in the momentum
equation �11� either on the ground of modern differential
geometry of the Riemannian manifold determined by gij, or
fully utilizing the Cartesian components in the embedding
Euclidean space, as is shown in the latter half of Appendix
A. Both methods yield the same result.

As the natural metric tensor for the present case is a 2
�2 symmetric tensor with det g� fixed to be unity, it can be
expressed by two parameters. We set

g� = �g��
� g��

�

g��
� g��

� � = �e−� �

� �1 + �2�e�� , �37�

with �=��� , t�, �=��� , t�, and calculate its inverse matrix
g�. Then we substitute it, together with g−1 calculated from
Eq. �36�, into the equations composing the constitutive rela-
tion. Equation �16� then yields the stress tensor P. Its Carte-
sian representation, calculated from Eqs. �25� and �26�, reads

P = p̃1 − �J = p̃1 − S�e��1 + �̃2� − 1 �̃

�̃ e−� − 1
�

C

, �38�

where �̃=�xz /S stands for the nondimensionalized shear
stress, and is given by

�̃ = e−�X� − � . �39�

The momentum equation �11� reads

��tU = S���̃ + �Gx, �40�

where Gx=G sin � is the x-directional component of the
gravitational acceleration vector G, given by Eq. �33�. Note
that the depthwise component of the equation of motion does
not participate in the dynamics, as it determines only the
hydrostatic pressure.

From Eq. �17� or �19�, taking Eq. �28� into account and
using g parametrized as Eq. �36� and g� as Eq. �37�, we
obtain

��t� = 1 −
2

2 + �
e�, �41�

��t� = − � +
2

2 + �
X�, �42�

where we have utilized the relation K=2 / �2+�� with � de-
fined by Eq. �23�, which holds for the two-dimensional case
�we note that the three-dimensional case is not so simple�.
By calculating � from Eq. �23� and then rewriting the result
in terms of �̃, we find

� = e��e−�X� − ��2 + 2�cosh � − 1� = e��̃2 + 2�cosh � − 1� .

�43�

Note that Eq. �43� endorses the relation between � and �̃
stated several lines before Eq. �29�, as long as �=o��̃�
�which is usually the case�.

Though the above equations constitute a closed system,
X� and � are inconvenient variables as they increase un-
boundedly as time elapses. To avoid this inconvenience, we
rewrite the equations in terms of U and �̃. Using the evolu-
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tion of �̃ instead of Eq. �42� for �, and also rewriting � in
terms of 	���, we obtain a system of three equations govern-
ing three variables, namely, ��� , t�, �̃�� , t�, and U�� , t�:

�t� = 	����1 −
2e�

2 + �
	 , �44a�

�t�̃ = e−���U − 	����̃ , �44b�

�tU =
S

�
���̃ + Gx. �44c�

Aside from the curious Eq. �44a� for �, this system of equa-
tions has a familiar form that can be recognized as a descrip-
tion of a slope flow �Fig. 2�, with Eq. �44b� relating the
nondimensional shear stress �̃ to the shear rate ��U, and Eq.
�44c� describing momentum balance. Plasticity is introduced
via 	���, that is, the inverse of the relaxation time mentioned
in Eq. �1�. The functional form of 	��� is specified by Eq.
�29� and Fig. 1 on the basis of Bingham plasticity. The non-
dimensional strain energy �, defined by Eq. �23�, is evaluated
as a function of �̃ and � as in Eq. �43�.

Equations �44a�–�44c� require two boundary conditions.
We pose a no-slip boundary condition at the wall,

�U��=0 = 0, �45�

while the free-surface condition, for the present case, gives

��̃��=H = 0. �46�

V. ANALYSIS

A. Qualitative consideration

Equations �44a�–�44c� together with two boundary condi-
tions define a closed system of evolutional equations. The
energy is supplied by gravitational work �GxU, stored as
elastic energy �, and dissipated through the relaxation of g�

that represents the viscous part of the Maxwell model. Plas-
ticity implies that the dissipation process is limited by a
threshold, in such way that the relaxation time can become
infinitely large according to Eq. �29�. This allows some part
of the elastic energy to remain frozen inside the paste.

In the present study, � plays an important role. Equation
�44a� clarifies that the threshold mechanism included in 	���,
shown in Fig. 1, governs the fundamental behavior of �. For
an � smaller than the threshold value, 	��� vanishes and
therefore a practically arbitrary function of � is admissible as
a steady solution to Eq. �44a�, as long as it allows � to stay
within the threshold. This implies a strong nonuniqueness of
� that can remain in the static paste; there is an infinitely
large number of possibilities, whose realization depends on
the time-dependent process of evolution �an analogous situ-
ation occurs also in dry granular materials subject to static
friction �23��. On the other hand, � in the flowing paste is
expected to evolve toward a steady solution that is uniquely
determined if the external force, layer thickness, and paste
properties are specified. This steady solution will be pro-
vided later in a closed form.

We will show that the residence of an ��0 in the paste
means the presence of x-directional tension. Then we will
derive a steady solution for a flowing paste analytically,
showing that � is positive there. Time-dependent numerical
calculations for flowing pastes typically exhibit relaxation
toward this solution, involving the creation of a positive �.
The numerical calculations also show that some portion of �
remains in the paste after its flow is stopped, and the residual
value of � is still positive. This process creates an
x-directional tension remaining in the paste and therefore
gives a possible clarification of the type-I Nakahara effect.

B. Residual tension

Let us confirm that ��0 implies tension. This is intu-
itively evident if we recall that e−� stands for the �� compo-
nent of the natural metric tensor �37�, and conceive of e−�

�1 as contraction of natural length of the �supposed�
“springs” in the x direction. More formally, this is demon-
strated by calculating the normal stress difference for the
“ground state” that minimizes the elastic energy � as a func-
tion of g, with g� being fixed. In terms of the parametriza-
tion given by Eqs. �36� and �37�, the problem is to minimize
�=��X� ,� ,�� for fixed values of �� ,��.

From Eq. �43� we find that the minimizer of ��X� ,� ,�� is
X�=e��, or equivalently �̃=0 �vanishing shear stress�. Then,
using Eq. �38� to calculate the diagonal components of �J in
Eq. �25�, we find the normal stress difference

�xx − �zz = 2S sinh � �47�

for �̃=0. Clearly, this is positive for ��0, showing a re-
sidual tension in the x direction.

C. Steady solution for flowing pastes

Equation �47� shows that a paste layer left in the unloaded
state ��̃=0� bears an x-directional tension if ��0. The next
task is to show that the flow makes ��0 if it approaches a
steady solution of Eqs. �44a�–�44c�.

For steady flows, the nondimensional shear stress �̃
=�xz /S is determined by the momentum balance �44c� and
the free surface boundary condition �46�. The result is

�̃ =
�Gx

S
�H − �� . �48�

Note that Eq. �48� holds for static states as well. For that
case, the steady solution consists of Eq. �48�, U=0, and an
arbitrary �=���� such that ���Y

2 /S2 �i.e., 	���=0�. On the
other hand, 	��� must be nonzero for flowing pastes, which
makes the steady solution totally different. For steady flows
�	����0 and �t�=0�, Eq. �44a� yields

� = 2�e� − 1� . �49�

Since � must be positive according to Eq. �43�, from the
above Eq. �49� it follows that � must be positive as well.
More concretely, from Eqs. �43�, �48�, and �49� we find
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� = −
1

2
ln�1 − �̃2� = −

1

2
ln�1 − ��Gx

S
�H − ��	2� �50�

for the flowing part of the paste in steady state. It is also
confirmed that �� �̃2 for small ��̃�.

The neighborhood of the free surface requires a separate
treatment, because this region remains solidified due to the
lack of a sufficient shear stress. The boundary between the
solidified and fluidized regions can be calculated by using
Eqs. �49� and �50�, which give �=������� in the fluidized
region, to find the location �Y such that �����Y��=�Y

2 /S2. In
the region �Y���H where the paste is solidified, the veloc-
ity U is uniform. The velocity U in the fluidized region can
be obtained by integrating Eq. �44b� under the boundary con-
dition �45�.

As is evident from Eq. �48�, the maximum of the shear
stress �xz occurs at the wall. The wall shear stress and its
nondimensionalized value are ��xz��=0=�GxH and ��̃��=0
=�GxH /S. For the paste to flow steadily, this wall shear
stress �GxH must be greater than the yield stress �Y. The
maximum � also occurs at the wall:

max
�

� = −
1

2
ln�1 − ��GxH

S
	2� �51�

according to Eq. �50�.
The above discussion suggests two nondimensional pa-

rameters that can be expressed as a ratio �GxH :�Y:S. Let us
complete the dimensional analysis of Eqs. �44a�–�44c� be-
fore proceeding to the numerical calculation of time-
dependent solutions.

D. Dimensional analysis

Equations �44a�–�44c� contain five physical parameters,
namely, S, �p, �, Gx, and �Y �the last one comes through 	�.
The first three determine the viscoelastic time scale �0
=�p /S and the length scale �0=�p /��S. The boundary con-
ditions introduce the layer thickness H as another length
scale.

The system is characterized by three nondimensional pa-
rameters, for example, H /�0, �Y /S, and �GxH /S �or a suit-
able combination of them�. Note that �GxH gives an estima-
tion of the wall shear stress, which represents the magnitude
of the external forcing.

Evaluation of Reynolds number will be useful for consid-
ering the Newtonian limit. On the basis of �p, H, and U
��GxH / ��p /H�=�GxH

2 /�p, it is estimated as

RH � � H

�0
	2�GxH

S
;

this is indeed calculated from two of the three parameters
stated above. In the present setup, H is taken as the repre-
sentative length scale, but we point out a general possibility
that the system may be characterized by other Reynolds
numbers, such as RL=UL /�p based on the horizontal length
scale L. In future studies this point may have to be taken into
account.

E. Numerical calculation of unsteady solution

The author calculated the numerical solutions of Eqs.
�44a�–�44c� �slightly modified, as we will see below� under
the initial condition ��� , �̃ ,U��t=0= �0,0 ,0� and the boundary
conditions �45� and �46�, with 	���� , �̃�� defined by Eqs.
�29� and �43�, for hundreds of different nondimensional pa-
rameters. With the hyperbolic character of Eqs. �44a�–�44c�
taken into account, the calculation adopted the two-step Lax-
Wendroff scheme �24�.

Since we are interested not only in the creation process of
�, but also the storage of � after the flow is stopped, it is
necessary to simulate the process to stop the flow. To this
aim, we “switch off” gravity at some time t=T����0�, re-
placing Eq. �44c� by

�tU =
S

�
���̃ +

Fx

�
, Fx = ��Gx �0 � t � T��

0 �t � T�� � �52�

with T�=100�0 or T�=200�0.
Figure 3 depicts a typical evolution of �� , �̃ ,U�. The pa-

rameters are H=5�0, �GxH :�Y:S=0.6:0.3:1, and T�

=100�0. In the first stage of the evolution, the system rapidly
approaches steady state, except for the region adjacent to the
boundary between the fluidized and solidified regions ��
=�Y=2.58�0� where the relaxation time is significantly
longer. After the gravity is “switched off” at t=T�, both �̃
and U oscillates around zero. This oscillation should be
damped if we consider the solvent viscosity, which is ne-
glected in the present model. What must be noted is that �
remains finite, though it decreases, after the driving force is
switched off at t=T�. The sign of the residual � is positive.

According to the analysis of 801 cases with T=100�0 and
689 cases with T=200�0, the behavior of � for different val-
ues of �GxH is summarized as follows. For �GxH smaller
than �Y /2, throughout the evolution � remains zero. If �GxH
exceeds �Y /2 but still remains below �Y, the evolution dur-
ing the forcing �0� t�T�� is basically unsteady, where � is
produced little by little from the interference of the stress
waves. For �Y��GxH�S �we always assume �Y�S�,
steady yield flow occurs, creating � according to Eq. �50�. In
both regimes stated above, a residual � is observed after t
=T�. The steady solution, Eq. �50�, ceases to exist for
�GxH�S, which leads to the unlimited acceleration of the
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FIG. 3. �Color online� Typical evolution of �� , �̃ ,U�.
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flow. This last case is out of the scope of the present model,
because U should be limited if, again, the solvent viscosity is
taken into account.

Steady solutions obtained by the time-dependent calcula-
tion during the forcing, approximately for T� /2� t
� �3 /4�T�, are checked against the analytical solution in Fig.
4. The curve shows max� � given by Eq. �51� as a function
of �GxH /S. The symbols, consisting of 122 circles �T�

=100�0� and 110 triangles �T�=200�0�, indicate the numeri-
cal values of max� � calculated within the range �Y
��GxH�0.72S, 0.05S��Y�0.30S, and 0.20�0�H
�8.0�0. The size �and the color� of each symbol indicates
the magnitude of �Y /S. Figure 4 demonstrates that the value
of steady � is independent of �Y, once �GxH exceeds it. For
T�=100�0, there were several cases for which � did not at-
tain its steady value �with the criterion �� / ���=0.02�; these
cases are eliminated from Fig. 4 for clarity. Such exceptional
cases did not occur for T�=200�0.

As an explanation of the Nakahara effect, it is essential to
show that some of � remains in the paste even after the flow
is stopped, instead of decaying away. Figure 5 shows the
numerical values of max� � remaining steady �not to decay
any more� after the flow is stopped. Here not � itself, but
�S2 /�Y

2 is plotted against �GxH /�Y for �GxH��Y /2 �the
ranges of �Y /S is the same as in Fig. 4, and that of H /�0 is
0.05�0�H�8.0�0�. The values of residual � for �Y
��GxH�1.3�Y is fitted by

max
�

� �
�Y

2

S2 �0.75
�GxH

�Y
− 0.2	 . �53�

In contrast to the steady value of � in the flow subject to the
driving force, the residual value of � in Eq. �53� is strongly
dependent on �Y. In particular, if �GxH /�Y is kept constant,
Eq. �53� states that the residual value of � is scaled by
��Y /S�2. This result seems understandable if we assume that,
during the decay of � and �̃=�xz /S, the first equal sign in
Eq. �50� remains valid, until �xz reaches the threshold value
�Y. This gives a rough estimation of the residual �

�0.5��Y /S�2. Unfortunately, theoretical clarification of Eq.
�53� in regard to its dependence on �GxH /�Y is not currently
available.

VI. DISCUSSION AND CONCLUDING REMARKS

A. Relationship with crack pattern experiments

In this paper we have found the creation and fixation of
the x-directional tension using a model equation for flows of
isotropic pastes. This provides a possible scenario for the
Nakahara effect �type I�.

During the drying process, the paste slowly shrinks.
Mathematically, this process is described as an isotropic con-
traction �shrinking� of the natural metric g�. If the paste had
not undergone a flowing process, this contraction would pro-
duce a basically isotropic tension in the �x ,y� plane �parallel
to the surface and the bottom� and therefore would lead to
isotropic crack patterns. Actually, this is not the case: we
have found that a positive � is created during the flowing
process, which implies that the natural metric is already con-
tracted in the streamwise direction. Strictly speaking, the
present analysis is limited to the two-dimensional system in
the �x ,z� plane and therefore it cannot tell whether any
y-directional contraction occurs, but it is unlikely that it will
occur to the same extent as the x-directional contraction. In
fact, though a full analysis of three-dimensional system is
too complicated to develop here, a simple perturbation analy-
sis supports the above conjecture. The bonds parallel to the
flow are therefore the first ones to break, causing cracks per-
pendicular to the flow and thus clarifying the Nakahara ef-
fect.

The present numerical analysis predicts that the magni-
tude of the residual � is scaled by ��Y /S�2, as is seen in Fig.
5 and Eq. �53�. This result is consistent with the observation
of Nakahara and Matsuo in regard to the strength of the
memory effect summarized as Fig. 2 in Ref. �3�. The figure
presents a classification of the observed patterns as a func-
tion of the solid volume fraction �density of the paste� and
the strength of the external forcing. Its region B, which lies
just above the yield stress line and exhibits the memory ef-
fect, is subdivided according to the strength of the anisotropy

0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

ρGxH / S

α

FIG. 4. �Color online� Steady values of � during the forcing.
Spatial maximum of �, whose steadiness is checked for a certain
time range, is plotted against �GxH /S. The line shows the analytical
solution �51�. The circles and the triangles represent numerical val-
ues for T�=100�0 and T�=200�0, respectively. The size and the
color of the symbols indicate �Y /S, from the small blue symbols for
�Y=0.05S to the large green symbols for �Y=0.30S.
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FIG. 5. �Color online� Residual value of � that remains in the
paste after the forcing is removed. The spatial maximum of �, res-
caled by ��Y /S�2, is plotted against �GxH /�Y. The same symbols
�circles and triangles� are used as in Fig. 4. The nonvertical broken
line, with slope 0.75, represents the fitting relation �53�.

CONTINUUM THEORY OF MEMORY EFFECT IN CRACK … PHYSICAL REVIEW E 77, 061501 �2008�

061501-9



in the pattern; strong anisotropy is observed for denser pastes
�lamellar crack patterns, denoted by solid squares, occupy
the subregion with volume fraction greater than 40%�, while
less dense pastes exhibit weaker anisotropy, resulting in
large-scale lamellar cracks ��H� combined with cellular
structure with smaller length scales ��H�. If we admit that
�Y /S is greater for denser pastes, the difference in the
strength of anisotropy can be explained from our theory pre-
dicting �� ��Y /S�2.

B. Comparison with dry granular flows and other systems
exhibiting memory effects

Memory effects are quite common in many glassy sys-
tems, ranging from granular matters to spin glasses. In the
case of dry granular matters �23,25�, history-dependent be-
havior essentially originates from the existence of interpar-
ticulate static friction. According to Coulomb’s friction law,
the interparticulate forces admit static indeterminacy, giving
rise to the history-dependent stress state. Fluidization and
solidification of granular matter also involves the creation
and destruction of grain-scale structures, such as arching and
force chains. Though the present study on paste flows is
based on macroscopic description and therefore discussion
on the grain-scale structure is outside its scope, comparative
consideration on static indeterminacy is quite helpful in un-
derstanding some common mechanisms underlying paste
flows and dry granular flows.

As seen at the top of Sec. V, the threshold mechanism in
	��� results in the static indeterminacy of �. It is this static
indeterminacy that enables the retention of the memory of
the shear flow. �In a different setup �13�, residual stress is
introduced via static indeterminacy of �.� Thus the present
paste model shares an important feature with dry granular
systems.

To elucidate the analogy and distinction between the
Bingham plasticity and Coulomb friction, let us consider an
instructive problem taken from Chap. 3 of Duran’s book
�23�. Suppose a brick on an inclined wall, subject to static
Coulomb friction �coefficient s� and a spring, as is illus-
trated in Fig. 6�a�. Duran’s problem is to determine the de-
formation x �or equivalently the repulsion kx� of the spring as

a function of the inclination angle �, when � varies slowly in
time.

Suppose that the wall starts from the horizontal position
��=0� and that we know the initial value of x, which we
denote by x0. For a while x is stuck to x0, until the “yield”
criterion

�mG sin � − kx� = smG cos �

is attained and the brick starts to slip. We assume the viscous
resistance −cẋ and neglect the dynamic Coulomb friction for
simplicity �50�, so that the brick moves according to

m
d2x

dt2 = − c
dx

dt
− kx + mG sin � �brick in motion�

and eventually stops. This process is repeated while � in-
creases, as is shown in Fig. 7�a� with a solid line �each slip is
assumed to stop when kx=mG sin � according to Duran
�23��. If � starts from � /2 and decreases slowly in time, a
similar but different stick-slip motion occurs, as depicted by
the broken line. Thus the system exhibits mechanical hyster-
esis due to static friction.

Now let us compare this mechanical hysteresis with the
behavior of the system in Fig. 6�b�, where the Coulomb fric-
tion is replaced by a discrete-element analog of Bingham-
like elastoplasticity. Its behavior is defined by combining
Eqs. �14� and �15a� or �15b� with

(a)

Coulomb
friction

mG
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k

θ
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Bingham-like

element
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θ

FIG. 6. �Color online� Duran’s brick on a slope to illustrate
static indeterminacy. �a� Original setup due to Duran �23�. Besides
the gravity and the repulsion of the spring, the brick is subject to
static Coulomb friction. �b� A modified setup, where Coulomb fric-
tion is replaced by a Bingham-like elastoplastic element.
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FIG. 7. �Color online� Mechanical hysteresis in Duran’s brick.
The deformation x is plotted against the inclination �, with a solid
line for the forward process �increasing �� and with a broken line
for the backward process. �a� Duran’s solution �23� in the case of
static Coulomb friction. �b� Bingham-like case with Eqs. �55a� and
�55b�. In addition to x, the natural length of the Bingham-like ele-
ment, x�, is delineated in thick �red� lines. �c� A solution of Eq. �56�
exhibiting Coulomb-like stick-slip motion.
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�−1 = 	�T� � �0 �E�T� � threshold�
�0

−1 �E�T� � threshold� ,
� �54�

which is a discrete-element version of Eq. �1�, with E�T�
=T2 / �2�� standing for the elastic energy stored in this ele-
ment. The governing equation of this system is summarized
as

dx�

dt
= 	�T��x − x�� , �55a�

m
d2x

dt2 = − T − kx + mG sin � , �55b�

supplemented with T=��x−x��. As for 	�T�, a Lipschitz-
continuous form analogous to Eq. �29� is assumed. By nu-
merical integration of Eqs. �55a� and �55b� with � increased
slowly from zero to � /2 and then decreased back, we obtain
the result shown in Fig. 7�b�. The thick solid line indicates
that a shift of x� has occurred during the process of increas-
ing �, and this shift was not recovered at all when � was
decreased �thick broken line�. In addition, when � has re-
turned to zero, there remains a difference in x and x�, indi-
cating residual pressure in this case. Thus, again, a hysteresis
due to static indeterminacy is observed. There is an impor-
tant difference, however, that the curves in Fig. 7�b� are
much less singular than those in Fig. 7�a�. In other words, at
least for the values of the parameters and the functional form
of 	�T� used in this calculation, no stick-slip behavior is
observed. This is probably related to the property of the
Bingham model, which predicts continuous shear stress
across the yield front in quite general cases �26�.

It is an interesting attempt to reformulate the stick-slip
motion subject to static Coulomb friction in terms of 	, to
obtain a �formally� unified equation:

dv
dt

= 	�v,F,N��F

c
− v	 , �56�

with

v =
dx

dt
, F = − kx + mG sin �, N = mG cos � .

A naive choice for 	 is

	�v,F,N� = �0 �v = 0 and �F� � sN�
�0

−1 = c/m �otherwise� .
�

Though this function is too singular to constitute a math-
ematically sound evolutional equation, adoption of continu-
ous interpolation similar to Eq. �29� enables the numerical
integration of Eq. �56�, resulting in stick-slip motion shown
in Fig. 7�c�. Note that, in Eq. �56�, the relaxation is attributed
to the momentum, but this seems to be somewhat unnatural
if we consider that friction is a property of the interface
while momentum concerns the whole mass of the body.
Rather, in analogy to Eq. �55a� where relaxation is attributed
to x�, it seems more appropriate to introduce a variable de-
scribing the state of the interface �possibly similar to the one
introduced by Carlson and Batista �27�� and prescribe its

relaxation. This is beyond the scope of the present work,
however.

In soil mechanics, a continuum version of Coulomb fric-
tion is known as Mohr-Coulomb plasticity �28�. Its applica-
tion to the statics of granular materials is usually supple-
mented with the limit-state assumption, which states that the
ratio of the shear stress to the normal stress is just below the
threshold value everywhere. This assumption makes it pos-
sible to evaluate the stress field without introducing granular
elasticity that is not understood very well. However, this
theory encounters a number of difficulties, as is discussed by
Kamrim and Bazant �29�. According to this theory, the static
stress field is subject to a nonlinear hyperbolic system of
equations �not in space-time but in the �x ,y� plane� which
predicts a highly discontinuous stress field. The solution for
the velocity field can be even more singular, which seems
abnormal both physically and mathematically. Sometimes it
also fails to satisfy the boundary conditions. Kamrim and
Bazant �29� have shown that these difficulties can be
avoided, within the framework of Mohr-Coulomb plasticity
with the limit-state assumption, by introducing diffusive mo-
tions via mesoscale objects called “spots.” In spite of this
successful result, the theory is not free from the limitation
due to the limit-state assumption, as the authors themselves
admit that clearly it breaks down in some cases.

Kamrim and Bazant �29� state repeatedly that the intro-
duction of elasticity will solve the difficulties of the Mohr-
Coulomb plastic model. To some extent, this remark applies
to Bingham plasticity as well. For example, the original
Bingham model exhibits a singular behavior due to the lack
of elasticity, in the sense that the propagation speed of yield
front is infinitely large �30�. Treatment of residual stress
would be also very difficult, if not impossible, without con-
sidering finite elasticity. This is why we sought to develop an
elastoplastic paste model from the beginning.

The present theory is conceptually akin to the models of
the memory effect in polymeric materials �10,31�. Miyamoto
et al. �10� studied the memory effect in the glass transition of
vulcanized rubber. They explained their experimental results
with a Maxwell-like model,

��t� = �rubber„T�t�,��t�… + Sglass�
−�

t

���t� − ��t���
�G�t̃�
�t�

dt�,

�57�

where � is stress, T is temperature, � is strain, G�·� is nor-
malized relaxation function, and t̃, defined by

t̃ = t̃�t,t�� = �
t�

t du

�„T�u�,��u�…
,

stands for the intrinsic time lapse. The effect of temperature
control �quenching and reheating� is expressed via �, which
changes the pace of the intrinsic time t� and thereby affects
the memory function in Eq. �57�. Note that ��t�� in the inte-
gral can be read as the natural length of a spring born at the
time t�. In this sense, Eq. �14� can be regarded as a simplified
version of Eq. �57�, though there is an important difference
that the memory in Eq. �14� is ascribed to a single variable
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x�, while Eq. �57� can memorize more about the history of
��t��. The “memory capacity” of Eq. �57� depends on the
property of the relaxation function G�·�. Using a sum of two
exponential functions, which implies double relaxation,
Miyamoto et al. �10� has successfully reproduced the
memory effect, including the effect of aging. In the present
model, contrastively, the relaxation time � is assumed to be a
single scalar function. Instead, the spatial distribution of �
and the effects of nonlinear elasticity are taken into account,
thus enabling the creation and storage of the streamwise ten-
sion.

The idea of ascribing the memory to the plastic shift in
the neutral point of elasticity, corresponding to � in Eqs. �38�
and �44a�, x� in Eqs. �14� and �55a�, and ��t�� in Eq. �57�, is
also shared by Ohzono et al. �31�. They studied micro-
wrinkle patterns produced on a platinum-coated elastomer
surface, governed by the competition between the restoring
force of the platinum tending to be less curved and that of
the elastomer that aims to shrink back. At room temperature,
application of a uniaxial compression force breaks the force
balance and changes the wrinkle pattern, but the original
pattern is retrieved after the external force is removed. Con-
trastively, a protocol involving higher temperature
�annealing-cooling-unloading protocol� changes the wrinkle
pattern, introducing strong anisotropy. The new pattern is
less stable to external forcing at room temperature, suggest-
ing the presence of multiple metastable states. These experi-
mental results are compared with a model prescribing the
minimization of the elastic energy as a functional of the sur-
face elevation z=z�x ,y�,

U�z� = Ubending + Uin-plane + Usubstrate,

Usubstrate =� �a�z − zm�2 + b�z − zm�4dxdy , �58�

where Ubending and Uin-plane are the potentials of bending and
in-plane deformation of the platinum layer, Usubstrate is the
potential of the substrate �with the constants a and b speci-
fied explicitly in terms of the material constants of the elas-
tomer�, and zm=zm�x ,y� represents the neutral point of
Usubstrate. Correspondence with Eq. �14� is obvious. The
memory is carried by spatial distribution of zm, which is
fixed at the room temperature but is subject to plastic flow in
the annealing-cooling-unloading protocol.

Generally, in elastic systems with more than several de-
grees of freedom �and particularly in continua�, a shift in the
neutral point introduces mechanical frustration. In the case of
Ohzono et al. �31�, it modifies the existing frustration, intro-
ducing multiple stability. In addition, spatial heterogeneity of
� and � in Eq. �37� is equivalent to the continuous distribu-
tion of edge dislocations and screw dislocations, respectively
�13,32,33�. Thus frustration is observed universally in sys-
tems admitting plasticity �in any sense of the word�, ranging
from granular matters to metal crystals and spin glasses.
From this viewpoint, we understand Eq. �44a� as describing
the dynamic creation and static retention of mechanical frus-
tration, presenting a macroscopic analog of dislocation dy-
namics.

C. Future directions

The present study is entirely based on macroscopic phe-
nomenology. It predicts the presence of a macroscopic
mechanism that leads to the type-I Nakahara effect, but it
does not assert the absence of other mechanisms, such as the
creation of bond fabric or microscopic texture. A possible
scenario is that the microscopic bond structure is well repre-
sented by the macroscopic �hydrodynamic� variables, such as
� and �̃, so that the most important feature of the mechanism
is already captured by the hydrodynamic equations. In other
words, we expect something analogous to ferromagnetism,
where the macroscopic magnetization represents the order
parameter. We cannot deny the possibility that some pastes
have “antiferromagnetic” bond structure, which makes the
macroscopic description more difficult. Even in the “ferro-
magnetic” case, consideration of microscopic details may in-
troduce some modification. For example, we have regarded
the yield stress as a given constant, but this may possibly
need to be modified, in the way similar to work hardening
and the Bauschinger effect in metals �34�. The constitutive
relations assumed in this paper require justification more cer-
tain than a physicist’s intuition, either by microscopic analy-
sis or thermodynamical inspection. It is worthwhile to con-
sider an extension of microscopic theories for glassy liquids,
such as the mode-coupling theory �35,36� and the pair distri-
bution function theory �37�, in the direction corresponding to
that of direct-interaction approximation in fluid turbulence
based on Lagrangian description �38–41�, in search of mi-
croscopic expression for g�

ij. Such a microscopic approach
would also allow us to construct a model for pastes whose
properties are not isotropic. It is expected, for example, that
a model including competitive interaction between the natu-
ral metric and director field may clarify the type-II Nakahara
effect.

Within the framework of the present model, an explana-
tion of Eq. �53� that gives the magnitude of the residual � is
an open question. It is also necessary to extend the present
work in several respects. On one hand, the limitation to uni-
form flows must be removed. The stopping process is simu-
lated in this paper by switching gravity off, but in real ex-
periments the paste flow stops when the paste supply is cut.
Simulation of this process requires the introduction of a vari-
able layer thickness h=h�x , t�, where the flow and the stress
fields depend on x as well. This extension will clarify the
relevance of different mechanisms, such as the one proposed
by Otsuki �42� where the x dependence of the plastic defor-
mation is essential. The present model can be readily ex-
tended in this direction, though its numerical analysis will be
much more difficult. Derivation of reduced equations, such
as depth-averaging �corresponding to Shkadov model
�43–45� in the film flows and Saint-Venant model �46,47� in
civil engineering�, will be worth considering.

On the side of experiments, it is desirable to realize a
uniform slope flow by eliminating the boundary effect in the
y direction. It is also necessary to measure the paste proper-
ties, such as S and �Y, so that a qualitative comparison be-
tween the theory and the experiment becomes possible. Fi-
nally, since the mechanism proposed in this paper is closely
related to the nonlinear viscoelasticity, it will be highly sup-
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portive to detect any indication of nonlinear viscoelasticity in
the paste, such as Weissenberg effect.
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APPENDIX A: NOTES ON THE FORMULATION
OF LAGRANGIAN CONTINUUM MECHANICS IN TERMS

OF DIFFERENTIAL GEOMETRY

Here we summarize the minimal mathematical knowledge
required to understand, for example, how to calculate each
side of Eq. �11�. Instead of going along the rather expensive
highway of Riemannian differential geometry, we take a
shortcut, making full use of the nd-dimensional Euclidean
space where the whole system is embedded.

1. Contravariant vector components

For each instant �with t fixed arbitrarily�, the mapping
from � to r provides an instantaneous curvilinear coordinate
system. This is sometimes referred to as a convected coordi-
nate system �48�. It is this coordinated system, and not the
space, that is curved.

Provided that the mapping �5�, for fixed t, is sufficiently
smooth and locally invertible, we find that

� �r

��
,
�r

��
,
�r

��
� �for nd = 3�

forms a set of local bases in the nd-dimensional Euclidean
space �r space�. Then, an arbitrary vector field, say f, can be
expressed as

f = � �r

��

�r

��

�r

��
�
 f�

f�

f� � = f��r

��
+ f� �r

��
+ f��r

��

or, in abbreviation with Einstein’s contraction rule,

f = f i�ir . �A1�

The coefficients �f i� in Eq. �A1� are referred to as contra-
variant components of the vector field f. According to the
convention of differential geometry, the contravariant com-
ponents are superscripted.

If the labeling variable is changed from � to � �in terms of
a continuous, one-to-one mapping independent of t�, the
bases are changed to

�r

� �̄i
=

�� j

� �̄i

�r

�� j .

Meanwhile the change from �f i� to � f̄ i� occurs in such a way
that it cancels the change in the bases �therefore the name
“contravariant”�, so that the vector f itself remains unaf-
fected:

f = f i �r

��i = f̄ i �r

� �̄i
.

An equation describing the relations between physical
quantities should be independent of the choice of labeling
variables. This is assured if and only if every term on both
sides of the equation has the same behavior in regard to the
relabeling. For example,

ai = 2bi

is acceptable, while

ai=
?

bi + 2

is not �we cannot add a scalar 2 to a contravariant vector
component bi�.

A second-order tensor, say P, can be expressed as

P = Pij��ir� � �� jr� , �A2�

where � is the tensor product, such that

a · �b � c� = �c � b� · a = �a · b�c .

The contravariant components �Pij� are subject to the same
kind of change as the product of two contravariant vector
components, so that P remains unaffected by the relabeling.
Note that Kronecker’s delta with superscripts, 
ij, does not
behave properly in regard to relabeling and therefore is not
acceptable as a physically meaningful tensor.

2. Dual basis and covariant vector components

As has been stated, we assume that the mapping from � to
r is smooth and invertible. Therefore it makes sense to define

��i =
��i

�r
; �A3�

a nabla without subscript, �, is a mere abbreviation for � /�r,
i.e., the gradient operator in the r space. Evidently ���i is
the dual basis of ��ir:

��ir� · �� j = 
i
j �A4�

due to the chain rule. Also

���i� � �ir = 1 , �A5�

where 1 denotes the unit tensor in the r space. Note that Eq.
�A5� holds thanks to the fact that the embedding r space has
the same dimension as the � space �otherwise ���i� � �ir
would be a projection operator whose rank is lower than the
dimension of the r space�. The dual basis allows us to find
the contravariant components of a given vector field, say f,
by
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f i = f · ��i; �A6�

substitution of this expression into the right-hand side of Eq.
�A1� recovers f due to Eq. �A5�.

As opposed to the contravariant components �f i� of a vec-
tor field f, we define its covariant components �f i� by

f = f i � �i. �A7�

It is easily confirmed that

f i = ��ir� · f = gijf
j ,

where gij stands for the Euclidean metric tensor defined in
Eq. �8�.

Using Eqs. �8� and �A5�, we identify �gij� with covariant
components of the Euclidean unit tensor,

gij���i� � ��� j� = 1 .

The contravariant components of 1 comprise the inverse ma-
trix of �gij�, denoted by �gij�, which leads to Eq. �24�. This
implies that �p̃gij� in Eq. �16� and �Kgij� in Eq. �19� stand for
isotropic tensors.

3. Covariant derivative

The momentum equation �11�, represented in terms of
contravariant components, contains � j which generally dif-
fers from � j =� /�� j. This “nabla with a subscript” is referred
to as the covariant derivative. When the space is curved, it is
not a trivial problem to define the covariant derivative in an
appropriate way. Fortunately, since the space itself is now
flat, we can now define � j as a component of a simple “gra-
dient” using �=� /�r. For a scalar field, say �, its gradient is

�� =
��

�r
=

��i

�r

��

��i = ���i��i�;

the covariant derivative of � is given by the covariant com-
ponents �i.e., the coefficients for ��i� of ��,

�i� = �i� . �A8�

The covariant derivative of a vector field is slightly more
complicated. For f given in terms of its contravariant com-
ponents �f i�, the gradient is

grad f = � � f = ���� j�� j� � �f i�ir� = ��� j� � � j�f i�ir�;

we define the covariant derivative � j f
i by

� j�f i�ir� = �� j f
i��ir �A9�

so that

grad f = �� j f
i����� j� � �ir� .

A handy way to evaluate � j f
i, in the present case, is to cal-

culate the Cartesian components of f= f i�ir and then to dif-
ferentiate them with � j, which yields the left-hand side of Eq.
�A9�. For those who disdain to depend on the embedding r
space, there is a more orthodox way based on a formula

�i f
j = �i f

j + �ik
j fk,

with �ik
j referred to as the Levi-Cività connection �also

known as the Christoffel symbol when it is calculated from
�i� jr�. Both ways lead to the same result.

The momentum equation �11� contains a term arising
from the divergence of stress tensor,

div P = lim
1

�V
�

���V�
P · ndS = � · tP ,

where t�·� denotes transposition �practically it could be omit-
ted, as P is symmetric�. Substitution of P= Pij��ir� � �� jr�
and �= ���k��k yields

div P =
�

�r
· t�Pij��ir� � �� jr��

= ���k� · t��k�Pij��ir� � �� jr��

= ��k�Pij��ir� � �� jr�� · ��k, �A10�

where the last equal sign follows from the definition of the
transposition. At this stage, we need the covariant derivative
for �Pij�. Taking into account a general postulation that any
formula for a second-order tensor should apply to the tensor
product of two vectors as well, we find the appropriate defi-
nition to be

�k�Pij��ir� � �� jr�� = ��kP
ij���ir� � �� jr� �A11�

so that

div P = ��kP
ij����ir� � �� jr�� · ���k�

= ��kP
ij���ir�
 j

k = �� jP
ij��ir .

Again, �kP
ij can be evaluated either in terms of the Cartesian

components of P or with a formula

�kP
ij = �kP

ij + �kl
i Plj + �kl

j Pil.

4. Velocity and acceleration

Up to the present point in this appendix, we have treated
the spatial aspect of the mapping from �� , t� to r with t fixed.
Now we will detail the temporal aspect of this mapping. Let
us recall that �t stands for the Lagrange derivative,

�t�·� = � � ·

�t
	

�

,

unless specified otherwise �in Eq. �4�, for example�. The ve-
locity v is then given by Eq. �6�, and the �material� accelera-
tion is

�t
2r = �tv = �t�vi�ir� �A12�

as is seen on the left-hand side of the momentum equation
just above Eq. �11�. Taking the time dependence of �ir into
account, we evaluate the acceleration as

�t�vi�ir� = ��tv
i��ir + vi�t�ir

= ��tv
i��ir + vi�i�tr = ��tv

i��ir + vi�iv

and rewrite the last term, which contains �iv, with the cova-
riant derivative. Thus we find
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�tv = ��tv
i + v j� jv

i��ir . �A13�

The contravariant component of Eq. �A13�, multiplied by �,
gives the left-hand side of Eq. �11�.

5. Derivation of Eq. (40)

Next, we study a concrete example to see how the mo-
mentum equation �11� is evaluated. With the mapping ��r
specified as Eq. �34�, the momentum equation �11� is to be
reduced to Eq. �40�.

Equation �34� readily yields the velocity in Eq. �35� and
the local basis

��r = �1

0
�

C
, ��r = �X�

1
�

C
, �A14�

where U and X� are understood as

U = �tX��,t�, X� = ��X��,t� .

Substituting Eq. �A14� into Eq. �8� yields �gij� in Eq. �36�.
The natural metric tensor is parametrized as Eq. �37�; this

expression becomes identical to that for g if �=0 and �
=X�. The components of the inverse natural metric tensor are
then

g� = �g�
�� g�

��

g�
�� g�

��� = ��1 + �2�e� − �

− � e−� � . �A15�

By using Eqs. �A14� and �A15�, the term g�
ij��ir� � �� jr� in

Eq. �25� is calculated to be

g�
ij��ir� � �� jr� = �1 + �2�e����r� � ���r� − �����r� � ���r�

+ ���r� � ���r�� + e−����r� � ���r�

= �1 + �2�e��1 0

0 0
�

C
− ��2X� 1

1 0
�

C

+ e−��X�2 X�

X� 1
�

C

= ��1 + �2�e� − 2�X� + e−�X�2 e−�X� − �

e−�X� − � e−� �
C

.

�A16�

Taking notice of the �x ,z� component of this expression,
which corresponds to �xz /S, we introduce �̃ given by Eq.
�39�. Then Eq. �25� yields a concrete expression for �J shown
in Eq. �38�.

In the present setup, the nabla operator is given by

� =
�

�r
=

��

�r
�� +

��

�r
��, �A17�

where

��

�r
= � 1

− X�
�

C
,

��

�r
= �0

1
�

C
.

Then the divergence in the momentum equation �11� is
evaluated in terms of the Cartesian components in the r
space:

− div P = − � 1

− X�
�

C

��p̃ − �0

1
�

C

��p̃

+ S����e��1 + �̃2� − 1 �̃

�̃ e−� − 1
�

C
	�0

1
�

C

= − �� 1 0

− X� 1
����p̃

��p̃
�	

C

+ S� ���̃

− e−����
�

C

,

where it is taken into account that �, �, and X� are indepen-
dent of �. As for the left-hand side of the momentum equa-
tion, it is easily shown that

�tv = ��tU

0
�

C
.

Calculating the inner product of the momentum equation
with ��r, we obtain

��tU = − ��p̃ + S���̃ + �G sin �; �A18�

similarly, the inner product with ��r yields

�X��tU = − ��p̃ + S�X����̃ − e−����� + �G�X� sin � − cos �� .

�A19�

From Eq. �A19�, we find that ��p̃ is independent of �.
Here we use a concrete formulation of the free-surface

boundary condition for P �neglecting surface tension and
surface contamination�,

�Pijnj��=H = patmgijnj , �A20�

where patm denotes the �constant� atmospheric pressure,
which can be set equal to zero without loss of generality, and
nj stands for the covariant component of the surface normal
vector, which is given by n=��z−H� so that nj =� jz
=�z /�� j for the present case. For p̃, the boundary condition
�A20� reads

��p̃ − �zz���=H = patm�=0� , �A21�

with �zz=S�e−�−1� according to Eq. �38�. Evidently, Eq.
�A21� is also independent of �. Then p̃ turns out to be totally
independent of �, which implies that ��p̃ in Eq. �A18� van-
ishes, leading to Eq. �40�.

6. Derivation of Eqs. (41) and (42)

The relaxation of g� is described by Eq. �17� or, equiva-
lently, Eq. �19�. We substitute g parametrized as Eq. �36� and
g� as Eq. �37� into Eq. �19�, together with

��t�g�
�� g�

��

g�
�� g�

��� = ��1 + �2�e� 0

0 − e−����t�

+ �2�e� − 1

− 1 0
���t� .

Equating each component of the matrix yields three equa-
tions for two variables � and �; the equations are consistent
�solvable� only when K is set appropriately, which is calcu-
lated, according to Eq. �28�, as
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K =
2

2 cosh � + e��̃2 =
2

2 + �
, �A22�

with � given by Eq. �43� in the two-dimensional case. From
the �� component and the �� component of Eq. �19� we
obtain Eq. �41� and Eq. �42�, respectively.

APPENDIX B: VARIATION OF THE ELASTIC ENERGY E

Equation �16� is obtained from elastic energy E in Eq.
�23� by calculating its variation in regard to r=r��� under the

constraint det g=1. In this calculation we use


�det g� = �det g�gij
gij ,


gij = 
��ir · � jr� = ��i
r� · � jr + �ir · �� j
r� ,

and

� j
�det g =

1

2
�det ggkl� jgkl = �det g���k� · � j�kr .

The result is as follows:


� EdV =
1

2
S
� �gijg�

ij − nd��det gdnd� =
1

2
S� �g�

ij +
1

2
�gij	
gij

�det gdnd� = S� �g�
ij +

1

2
�gij	��ir� · �� j
r��det gdnd�

= − S� �� j��g�
ij +

1

2
�gij	�det g�ir�� · 
rdnd� = − S� ����k� · �k��g�

ij +
1

2
�gij	��ir� � �� jr��� · 
r�det gdnd�

�B1�

and


� p���det g − 1�dV = 
� p���det g − 1��det gdnd� =� p��1 −
1

2�det g
	
�det g�dnd�

=� p���det g −
1

2	2gij��ir� · �� j
r��det gdnd� = −� �� j�p��2�det g − 1�gij��ir��det g� · 
rdnd�

= −� ����k� · �k�p��2�det g − 1�gij��ir� � �� jr�� · 
r�det gdnd� , �B2�

which is summarized as


� �E − p���det g − 1��dV =� ����k� · �k�Pij��ir� � �� jr�� · 
r�det gdnd� , �B3�

with

Pij = − S�g�
ij +

1

2
�gij	 + p��2�det g − 1�gij = − Sg�

ij + �p� − E�gij , �B4�

where the last equal sign is due to �det g=1. Then, rewriting the undetermined multiplier as p�= p̃+E−S, we obtain Eq. �16�.
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